Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biochem ; 476(2): 819-829, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33090336

RESUMEN

Disruption of the finely tuned osteoblast-osteoclast balance is the underlying basis of several inflammatory bone diseases, such as osteomyelitis, osteoporosis, and septic arthritis. Prolonged and unrestrained exposure to inflammatory environment results in reduction of bone mineral density by downregulating osteoblast differentiation. Earlier studies from our laboratory have identified that Anacardic acid (AA), a constituent of Cashew nut shell liquid that is used widely in traditional medicine, has potential inhibitory effect on gelatinases (MMP2 and MMP9) which are over-expressed in numerous inflammatory conditions (Omanakuttan et al. in Mol Pharmacol, 2012 and Nambiar et al. in Exp Cell Res, 2016). The study demonstrated for the first time that AA promotes osteoblast differentiation in lipopolysaccharide-treated osteosarcoma cells (MG63) by upregulating specific markers, like osteocalcin, receptor activator of NF-κB ligand, and alkaline phosphatase. Furthermore, expression of the negative regulators, such as nuclear factor-κB, matrix metalloproteinases (MMPs), namely MMP13, and MMP1, along with several inflammatory markers, such as Interleukin-1ß and Nod-like receptor protein 3 were downregulated by AA. Taken together, AA expounds as a novel template for development of potential pharmacological therapeutics for inflammatory bone diseases.


Asunto(s)
Ácidos Anacárdicos/farmacología , Enfermedades Óseas/tratamiento farmacológico , Inflamasomas/antagonistas & inhibidores , Osteoblastos/efectos de los fármacos , Osteocalcina/agonistas , Ligando RANK/agonistas , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Inflamasomas/metabolismo , FN-kappa B/antagonistas & inhibidores , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Ligando RANK/metabolismo
2.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197293

RESUMEN

Interleukin (IL)-35 is an immunosuppressive cytokine mainly produced by regulatory T cells. IL-35 mediates immunological functions by suppressing the inflammatory immune response. However, the role of IL-35 in bone-destructive diseases remains unclear, especially in terms of osteoclastogenesis. Therefore, the current study investigated the synergistic effect of IL-35 on osteoclastogenesis that is involved the pathogeneses of periodontitis and rheumatoid arthritis. Osteoclastic differentiation and osteoclastogenesis of RAW264 (RAW) cells induced by receptor activator of nuclear factor (NF)-κB ligand (RANKL) and IL-35 were evaluated by tartrate-resistant acid phosphate staining, hydroxyapatite resorption assays, and quantitative polymerase chain reaction. The effect of IL-35 on RANKL-stimulated signaling pathways was assessed by Western blot analysis. Costimulation of RAW cells by RANKL and IL-35 induced osteoclastogenesis significantly compared with stimulation by RANKL alone. Phosphorylations of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase tended to be increased by RANKL and IL-35 compared with RANKL or IL-35 alone. Additionally, the osteoclastogenesis induced by RANKL and IL-35 was suppressed by inhibition of ERK. In this study, IL-35 and RANKL induced osteoclastogenesis synergistically. Previous reports have shown that IL-35 suppresses the differentiation of osteoclasts. Therefore, IL-35 might play dual roles of destruction and protection in osteoclastogenesis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Interleucinas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Monocitos/metabolismo , Osteoclastos/metabolismo , Ligando RANK/farmacología , Animales , Interleucinas/agonistas , Ratones , Monocitos/citología , Osteoclastos/citología , Ligando RANK/agonistas , Células RAW 264.7
3.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947859

RESUMEN

Receptor activator of nuclear factor-κB ligand (RANKL) is a cytokine responsible for bone resorption. It binds its receptor RANK, which activates osteoporosis. High levels of osteoprotegerin (OPG) competitively binding RANKL limit formation of ligand-receptor complexes and enable bone mass maintenance. The new approach to prevent osteoporosis is searching for therapeutics that can bind RANKL and support OPG function. The aim of the study was to verify the hypothesis that isoflavones can form complexes with RANKL limiting binding of the cytokine to its receptor. Interactions of five isoflavones with RANKL were investigated by isothermal titration calorimetry (ITC), by in silico docking simulation and on Saos-2 cells. Daidzein and biochanin A showed the highest affinity for RANKL. Among studied isoflavones coumestrol, formononetin and biochanin A showed the highest potential for Saos-2 mineralization and were able to regulate the expression of RANKL and OPG at the mRNA levels, as well as osteogenic differentiation markers: alkaline phosphatase (ALP), collagen type 1, and Runt-related transcription factor 2 (Runx2). Comparison of the osteogenic activities of isoflavones showed that the use of physicochemical techniques such as ITC or in silico docking are good tools for the initial selection of substances showing a specific bioactivity.


Asunto(s)
Conservadores de la Densidad Ósea , Isoflavonas , Simulación del Acoplamiento Molecular , Osteogénesis/efectos de los fármacos , Osteoporosis , Ligando RANK , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/farmacología , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Isoflavonas/química , Isoflavonas/farmacología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología , Ligando RANK/agonistas , Ligando RANK/química , Ligando RANK/metabolismo
4.
Biomed Res Int ; 2018: 4637084, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151382

RESUMEN

Microglial healing peptide 1, "MHP1", is a newly developed synthetic peptide composed of the DE and a part of the EF loop of the receptor activator of nuclear factor-кB (NFκB) ligand (RANKL). Our previous report demonstrated that MHP1 significantly inhibits Toll-like receptor (TLR) 2- and 4-induced inflammation in microglia/macrophages through RANK signaling without osteoclast activation. However, its inhibitory effects on ischemic stroke when administered intravenously have not been clarified. First, we examined whether MHP1 could penetrate the brain parenchyma. Intravenous injection of FITC-conjugated MHP1 demonstrated that MHP1 could cross the blood-brain-barrier in peri-infarct regions, but not in intact regions. Because MHP1 in the parenchyma was reduced at 60 minutes after injection, we speculated that continuous injection was necessary to achieve the therapeutic effects. To check the possible deactivation of MHP1 by continuous injection, the anti-inflammatory effects were checked in MG6 cells after incubation in 37°C for 24 hours. Although the inhibitory effects for IL6 and TNFα were reduced compared to nonincubated MHP1, its anti-inflammatory efficacy remained, indicating that continuous administration with pump was possible. The single and successive continuous administration of MHP1 starting from 4 or 6 hours after cerebral ischemia successfully reduced infarct volume and prevented the exacerbation of neurological deficits with reduced activation of microglia/macrophages and inflammatory cytokines. Different from recombinant RANKL, MHP1 did not activate osteoclasts in the paralytic arm. Although further modification of MHP1 is necessary for stabilization, the MHP1 could be a novel agent for the treatment ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Péptidos/uso terapéutico , Ligando RANK/agonistas , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Ratones , Microglía , Osteoclastos
5.
Cell Mol Biol (Noisy-le-grand) ; 64(5): 29-39, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29729691

RESUMEN

Postmenopausal osteoporosis is a common disorder accompanied with estrogen deficiency in women. Plants containing phytoestrogens and amino acids have been used in the osteoporosis treatment. The present study aims to evaluate the estrogen-like activity of the Cicer arietinum extract (CAE) and its ability to inhibit osteoclastogenesis process. These achieved by investigating the binding of its active phytoestrogens (genistein, daidzein, formononetin and biochanin A) to the estrogen receptors (ER) α and ß of rats and human in silico. In addition, in vivo study on ovariectomized (OVX) rats is performed. For in vivo study, twenty four rats were divided into four groups (n= 6). Group I is the sham control rats which administered distilled water. Groups II, III, and IV are OVX groups which administered distilled water, CAE (500 mg/kg), and alendronate; respectively. The docking study revealed that the phytoestrogens docked into the protein active site with binding energies comparable with that of estrogens (estriol and ß-estradiol) which means the similarity between the estrogenic contents of CAE and the ensogenous ones. Additionally, in vivo study revealed that CAE reverse TRAP5b and RANKL levels that drastically increased in the untreated OVX group. But, it trigger upregulation of OPG, enhance the OPG/RANKL ratio and modulate the bone and uterus alterations of OVX group. Phytoestrogens and the bone-protective amino acids contents of CAE could be responsible for their estrogen-like effect and antiosteoporotic activity. These results concluded that CAE is an attractive candidate for developing a potential therapeutic cheap agent used as an alternative to the synthetic estrogen replacement therapy. Further, in vivo validation is required for its clinical application.


Asunto(s)
Cicer/química , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Fitoestrógenos/farmacología , Fitoterapia , Alendronato/química , Alendronato/farmacología , Animales , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/aislamiento & purificación , Conservadores de la Densidad Ósea/farmacología , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Estradiol/química , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/metabolismo , Femenino , Regulación de la Expresión Génica , Genisteína/química , Genisteína/aislamiento & purificación , Genisteína/farmacología , Humanos , Isoflavonas/química , Isoflavonas/aislamiento & purificación , Isoflavonas/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Simulación del Acoplamiento Molecular , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Osteoprotegerina/agonistas , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ovariectomía , Fitoestrógenos/química , Fitoestrógenos/aislamiento & purificación , Estructura Secundaria de Proteína , Ligando RANK/agonistas , Ligando RANK/genética , Ligando RANK/metabolismo , Ratas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/antagonistas & inhibidores , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo
6.
Sci Rep ; 6: 38062, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27897273

RESUMEN

The enhanced receptor activator of nuclear factor-κB (NFκB) ligand (RANKL) and its receptor (RANK) signal have been reported to attenuate ischemic brain injury through inhibition of Toll-like receptor (TLR) 4-mediated inflammation. However, augmentation of the RANKL/RANK signal also accelerates osteoporosis, which is a potential problem in clinical use of RANKL. Therefore, we developed novel peptides, microglial healing peptides (MHPs), which were based on the DE and/or EF loop of RANKL. Among them, MHP1 was the most effective inhibitor of TLR4-induced inflammations in microglia/macrophages. The effects depended on RANK, as confirmed by knockdown experiments. In contrast to RANKL, MHP1 did not stimulate osteoclast differentiation. Unexpectedly, MHP1 inhibited RANKL-induced osteoclast differentiation. These findings suggested that MHP1 was a partial agonist of RANKL, and administration of MHP1 attenuated ischemic injury by decreasing inflammation. MHP1 could be a novel therapeutic agent for treating ischemic stroke.


Asunto(s)
Péptidos/farmacología , Ligando RANK/agonistas , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Isquemia Encefálica , Diferenciación Celular/efectos de los fármacos , Ratones , Osteoclastos/metabolismo , Osteoclastos/patología , Péptidos/química , Ligando RANK/metabolismo , Células RAW 264.7 , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo
7.
J Biol Chem ; 286(36): 31425-36, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21715325

RESUMEN

Increased vitamin A (retinol) intake has been suggested to increase bone fragility. In the present study, we investigated effects of retinoids on bone resorption in cultured neonatal mouse calvarial bones and their interaction with glucocorticoids (GC). All-trans-retinoic acid (ATRA), retinol, retinalaldehyde, and 9-cis-retinoic acid stimulated release of (45)Ca from calvarial bones. The resorptive effect of ATRA was characterized by mRNA expression of genes associated with osteoclast differentiation, enhanced osteoclast number, and bone matrix degradation. In addition, the RANKL/OPG ratio was increased by ATRA, release of (45)Ca stimulated by ATRA was blocked by exogenous OPG, and mRNA expression of genes associated with bone formation was decreased by ATRA. All retinoid acid receptors (RARα/ß/γ) were expressed in calvarial bones. Agonists with affinity to all receptor subtypes or specifically to RARα enhanced the release of (45)Ca and mRNA expression of Rankl, whereas agonists with affinity to RARß/γ or RARγ had no effects. Stimulation of Rankl mRNA by ATRA was competitively inhibited by the RARα antagonist GR110. Exposure of calvarial bones to GC inhibited the stimulatory effects of ATRA on (45)Ca release and Rankl mRNA and protein expression. This inhibitory effect was reversed by the glucocorticoid receptor (GR) antagonist RU 486. Increased Rankl mRNA stimulated by ATRA was also blocked by GC in calvarial bones from mice with a GR mutation that blocks dimerization (GR(dim) mice). The data suggest that ATRA enhances periosteal bone resorption by increasing the RANKL/OPG ratio via RARα receptors, a response that can be inhibited by monomeric GR.


Asunto(s)
Resorción Ósea/inducido químicamente , Periostio/patología , Ligando RANK/agonistas , Receptores de Glucocorticoides/fisiología , Retinoides/farmacología , Animales , Animales Recién Nacidos , Ratones , Osteoprotegerina , Ligando RANK/antagonistas & inhibidores , Receptores de Ácido Retinoico , Receptor alfa de Ácido Retinoico , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...